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Development of a Shallow-Water Icing Model in FENSAP-ICE
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and
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As part of a modern comprehensive in-flight icing simulation code (FENSAP-ICE), a new thermodynamicmodel
for ice accretion is developed (the Shallow-Water Icing Model or SWIM). SWIM is based on a system of partial
differential equations (PDEs) and thus is thought to be superior to a control volume (no PDE) approach used
in current icing codes. Flexibility in the physical modeling and flexibility in numerical algorithm selection make
SWIM an attractive icing model. The complete model, numerical algorithms used, and results are presented.

Nomenclature
C; = cell at node i of the dual surface mesh
Cice = specific heat of ice
C, = specific heat of water
hy = film thickness
h; = film thickness at node i
hij = midedge value of i
Ly = evaporation latent heat of water
L tusion = fusion latent heat of ice
L = sublimation latent heat of ice
LWC = cloud liquid water content
Meyap = evaporative mass flux
nt; = ice accretion mass flux at node i
Mice = ice accretion mass flux

n;j = vector normal to the dual cell boundary
along the edge i j

Ocond = conductive heat flux from structure

0O = convective heat flux from air

S,.h = right-hand side (RHS) of the discrete mass
conservationequation

ST = RHS of the discrete energy conservationequation

T = absolute temperature, °K

T = scaled temperature (=T — Tyr)

Ty = scaled temperature of supercooled droplets

T; = scaled temperature at node i

Tt = reference temperature (triple point of water in °K)

Tw = absolute temperature of the air at infinity, K

Uy, = velocity of air at infinity

u = velocity of the film

i = average (along y) velocity of the film

(u,v) = dependent variables in the icing plane

U, = impact droplet velocity

(ui, vi) = dependent variables in the icing plane at node i

Ujj = midedge value of u

x =(x1, xy) = coordinatesalong the wall

y = coordinates normal to the wall
B = local collection efficiency
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Wy = dynamic viscosity of water
P = water density

o = Boltzmann constant

Tyall = air wall shear stress

I. Introduction

HE simulation of ice accretion has been traditionally based

on inviscid panel or Euler flow computations for the air, on
Lagrangian particle-tracking techniques for the droplets impinge-
ment, and on a control volume analysis of the mass and heat trans-
fer to model the ice accretion. The best known codes using these
approaches are NASA’s Lewice' and the ONERA icing code.
A wealth of experience on the physics of ice accretion makes
these codes valuable tools for a broad spectrum of in-flight icing
situations? These codes are also efficient in terms of computer re-
sources requirement, but they need fine tuning, especially of the
heat-transfer coefficients, which cannot be predicted by potential
or inviscid flow models.* The heat-transfer coefficient must thus be
guessed or parameterized in some way, leaving the engineer with
a difficult task in the presence of major flow separations, as with

glaze ice.

The conventional icing simulation approach also suffers from
other limitations, such as limited ability to handle full three-
dimensional simulations. For example, the calculation of collection
efficiency seems to be a mixture of two- and three-dimensional
Lagrangian particle tracking, with the danger of missing three-
dimensional effects on the collection efficiency close to blade or
wing tips and in complex wing/nacelle configurations. Another lim-
itation is the very crude geometrical modeling of the water film
runback, which limits the applicability of the current icing simula-
tion technology to two-dimensional. Apart from an effort on three-
dimensional film modeling,2 no three-dimensional film model is

available in the icing literature or in icing codes.

Moreover, as far as the thermodynamicsofice and water on walls
is concerned, current icing models"%> do not make any distinction
between the physical model and the discretization of the model
actually used in computer codes. As far as we know, the only effort
in splitting the physical model and its numerical discretization is
the work of Al-Khalil et al.,% but their work accounts only for the
film runback with no ice accretion. The resulting icing model is a
large system of discretized equations expressing the heat and mass
balanceon finite control volumes at the air/ice interface.It is unclear
whether the system is well posed or even properly closed, or if
unstable numerical solutions or numerical bifurcations can result
from wrong physical assumptions or numerical schemes. In fact,
the terms most likely to cause numerical instabilities, such as the
time derivatives, are simply thrown away, and a sequence of steady
problems is solved for what is clearly an unsteady problem, that is

the growth of ice shapes.
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Current computationalfluid dynamics (CFD) technologiescould,
to a large extent, overcome the limitations just stated. By solving
the compressible Navier-Stokes equations, one can automatically
obtain the heat-transfer coefficients and, at the same time, fully
and directly account for the influence of the viscous effects on the
degradation of performance. A full three-dimensional approach to
icing, with efforts put on physical models and on the independent
choice of appropriate numerical techniques, is also possible through
CFD technology, at a cost of solving models based on partial dif-
ferential equations (PDEs). By adding and removing terms in the
system of PDEs, one can model as much physics as necessary to
have reliable predictions and make the information travel properly
and naturally through space. The effect of the numerical scheme
could also be investigated without having to compromise the phys-
ical modeling for the sake of code stability. Finally, a modern CFD
approach to icing simulation would bring new computational and
simulation technologies to the icing community, such as advanced
iterative methods, moving meshes and mesh adaptation. This would
help make the investigation of complex engineering problems, such
as wing/body junctions, nacelle/inlet or tailplanes icing affordable.

The CFD Laboratory of Concordia University has developed an
Eulerian model forimpinging droplets.” The efficiency of this model
has been shown through the investigation of impingement patterns
on the nose of an aircraft, including fine details of the cockpit
windows.? Itis the purposeof the present paperto go a step furtherin
the application of CFD techniquesto the in-flighticing and propose
a thermodynamic model for the ice accretion and water runback.
The physical model, written as a system of PDEs, is described. Ap-
propriatenumerical methods and code interactions with the flow and
droplet solvers are presented. Numerical results are also presented.

II. Shallow-Water Icing Model

An icing simulation code is generally composed of three to four
modules, i.e., a flow solver, a droplets impingement solver, a ther-
modynamical module for ice accretion prediction, and optionally a
structure code to account for conjugate heat transfer in anti-icing
systems.” The classical compressible Navier-Stokes equations are
at the basis of the present airflow computations. An Eulerian droplet
code’ is used to obtain the water collection efficiencies on walls.

A new equilibriummodel is introducedin this paper to predictthe
ice accretion and water runback on the surface. Figure 1 shows the
heat and mass transfer phenomena taken into account in the model.

The velocity u of the water in the film is a function of coordinates
x =(xy, Xx,) on the surface and y normal to the surface:

u(x, y) = f(twan, ) 1
where 7y, is the main driving force for the water film. A simplifying
assumption consists in taking f linear in y with u(x, y) null at the

wall, i.e.,

u(x, y) = (/1) tyan (X) 2

impingement evap/subl

N\ /

h = height of the film
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Fig. 1 Heat and mass balance in a thin film.

By averagingthe physical quantities along the thickness of the film,
a so-called Shallow-Water Icing Model (SWIM) is obtained. For the
velocity this gives

hy

h
i) == [ u(x.ydy = ﬁrwau(x) 3)
fJo w

The system of PDEs is the following:

Mass Conservation
oh, . .
Pw 7 + dlv(uhf) =UsLWCB - Mevap — Mice 4)

where the three terms on the RHS model, respectively, the mass
transfer caused by the water droplets impingement (source for the
film), the evaporation, and ice accretion (sinks for the film).

Energy Conservation

oh,C,T . . 2
. [fa—t + div(ﬁthwT)i| = [CWTM + ””;” }

XUy LWC ﬂ - O-S(Levap + Lsubl)mevap

+ (qusion - Cicef)mice + O_(Toi - T4) + Qh + Q0011d (5)

where the first three terms on the RHS model, respectively, the heat
transfer caused by the super-cooled water droplets impingement,
the evaporation, and ice accretion; the last three are the radiative,
convective, and conductive heat transfer.

The coefficients p,,, C,,, Ty 00 » Uso , LW C, Leyap, Lsubis Liusion Cice»
o, and T, are constant parameters (at first) specified by the user.
The substanceinvolved (water near freezing point), and the ambient
icing conditions completely determine those values. The Eulerian
droplet module provides local values for the collection efficiency 8
and the droplet impact velocity u,, and the flow solver provides
local values for the wall shear stress 7y, and the convective heat
flux Q),. The evaporative mass flux is recovered from the convective
heat flux using a parametric model.’ The conductive heat flux could
be given by a thermal structure analysis code or a simple model
inside the icing module.

Thus, there remain three unknowns: the film thickness %/, the
equilibrium temperature 7" within the air/water film/ice/wall inter-
face, and the instantaneous mass accumulationof ice ;... Only two
PDEs are available to specify three unknowns, as obtained from
the mass and energy conservation. The momentum conservation is
hidden in the simplified and explicit form [Eq. (1)]. Its implicit so-
lution, in conjunction with the other two conservation laws, would
definitely allow the inclusion of more mechanical effects in the de-
scription of the film behavior (such as pressure gradientand surface
tension effects), but each extra momentum equation would come
with an extra unknown velocity component.

In fact, compatibility relations or state equations are needed to
close the system. Up to this point, nothing in the model ensures
that no ice accretes above the freezing point and no water film runs
back below the freezing point. The compatibility relations strictly
enforce these conditions on the solution. One way to write them is
the following:

Compatibility Relations

h; =0 (6)
Titice =0 7
hyT =0 ®)
i T <0 ©)

The first compatibility relationis a natural assumption on the film
thickness, as is the positivity of the air density for a compressible
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Fig. 2 Surfacegenerated by
the compatibility relations: 1,
running wet, no ice; II, glaze
icing; IIL, rime icing.

flow. This first assumption is explicitly stated as there is no guar-
anty, at this time, that the model forces the film thickness to remain
positive. The second compatibility relation, although not essential,
just prevents the remelting of ice. It could probably be removed
in case inward movements of the geometry (for ice remelting) can
be properly handled. On the basis of the first two compatibility re-
lations, the inequalities (8) and (9) are the true state (in)equations
preventingundesirablefreezing/runback behaviorsabove/below the
triple point of water.

To investigatethe well posednessof SWIM, one should first see if
the compatibility relations lower the number of unknowns from 3 to
2.Indeed, as couldbe seen on Fig. 2, theregionsofthe (h /, T, 7it;ce)-
icing space delimited by the compatibility relations generate a con-
nected surface, called the icing surface. But two degrees of freedom
are enough to describe a surface. It thus becomes clear that by re-
stricting the solution of SWIM to the icing surface the number of
unknowns matches the number of PDEs available.

The icing surface is composed of three contiguous quarters of
plane. The first one, labeled I on Fig. 2, corresponds to a running
wet-no ice growth condition above the freezing point. Some water
may impinge on the walls, but no freezing occurs. Regions II and
III correspond to wet and dry ice growth conditions, respectively.
For wet or glaze ice growth a water film and some ice are present
simultaneously,and the equilibriumtemperature should be the triple
point of water. For dry or rime ice growth all of the impinging water
freezes; no water runback and the temperature of the interface could
be below the freezing point. Of course, the solutionis not restricted
to any particular situation in space and in time, and switching is
done automatically by the solver.

Up to now, we have looked at the following:

Icing Problem: Find h ¢, T, and m;. satisfying the PDEs and the
compatibility relations.

It is possible to switch the dependent variables. For example, for
anti-icing applications, a possible variant would be the anti-icing
problem. .

Anti-Icing Problem: Assuming 1t =0, find hy, T, and Qcong
satisfying the three equations and such that Q,,¢ minimizes the
total heat flux

QCOlld (.X) dx

wall

In this paper, we concentrate on the icing problem.

Naturally, SWIM has to interact with the other solvers because
both the icing and the anti-icing problems are coupled with the air
and droplets solutions. Figure 3 shows the code interactionstogether
with the variables transferred between codes.

III. Computational Approach

Apart from the strategy used in SWIM, which is detailed next, the
following methods are used for the numerical solution of the icing
problem:

1) Each of the three systems of PDEs (air/droplet/SWIM) are
solved independently from the others; selected variables are passed
between solvers.

2) Both the flow and droplets solvers are weak-Galerkin finite
element models on bricks, prisms, or tetrahedra.

Flow solver New mesh&
ALE solution

Ihic T Q h

Droplets solver

Structure
solver

Fig. 3 Code interactions with SWIM.

3) A Newton-generalized minimal residual (GMRES) algorithm
is used to solve each nonlinear system of equations.

4) The movement of the walls caused by ice growth is done in
the flow solver through an arbitrary Lagrangian Eulerian (ALE)
scheme,'® using the instantaneous ice growth rate 1. to specify
the wall nodes movement and could be complemented by a mesh
optimization method.!"!

Special care has to be taken because the two PDEs of SWIM are
expressed on the walls of the geometry, i.e., on a two-dimensional
surface embedded in a three-dimensional one. So, the first deriva-
tives, more precisely the div operator, of some unknowns have to
be evaluated along the wall surface. A classical way to compute the
divergence of some vector on a surface is through the introduction
of a curvilinear coordinate system on the surface. To avoid the intro-
duction of such curvilinear coordinates of an evolving (caused by
ice growth) wall surface, the intrinsic definition of the div operator
is applied:

u-nds
divu(P) = lim f”—

v—7 vol(V) (10)

where V is an area element that shrinks to the point P on the surface.

The finite volume method is an applicationof thatdefinition butat
adiscretelevel. A finite volume cell is chosenas the areaelement ) in
Eq. (10) instead of a vanishing sequence of arbitrary area elements.
Here a finite volume cell means a cell of the dual surface mesh,
where the surface mesh is the hull of the three-dimensional mesh
at the air-structurefice shape interface and the dual surface mesh is
the surface mesh obtained while connecting the barycenter of the
surface mesh cells to the midedges of the cells (see Figs. 4 and 5).

The two PDEs of SWIM are discretized using a cell-vertex Roe
finite volume scheme'*"* basedon h ; and /i ;T assolutionvariables.
This gives

area(C,-)(aa—}: - Sf) + Z [%(h? + hzl)

J

- |uij . nijlhij(hj - hi)i| =0 (11)

oC, T, i i 0 -
area(C-)(;—t - S,-T> +C, ) [%(hfzﬂ +hiT))

J

= oy - nijlhij(hjfi - hii’):| =0 (12)

The summation is taken over all of the nodes j connected to the
node i. The time derivatives could be discretized with any finite
difference formula, provided it results in a fully implicit scheme.
The variables h; and h;T; are only needed to write down the
Roe scheme. Indeed, their use as dependent variables is not recom-
mended for the present system as_the film thickness /; will vanish
in many icing situations, and h;7; would also vanish, preventing
the recovery of T; from h;T; as when h; is strictly positive. The
variables i; and T; seem to be a better choice. Even if /; vanishes
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3-D mesh

dual surface mesh

Fig. 4 Surface meshes for three-dimensional structured grids.

3-D mesh

dual surface mesh

Fig. 6 Icing plane: I, running wet, no ice;
11, glaze icing; III, rime icing; IV, dry air,
no man’s land.

at some grid points, the use of a fully implicit scheme will make
possible the recovery of 7; from the degenerated equations Si” =0
and ST =0.

The instantaneousice accretion rate n1; is also a dependent vari-
able, although appearing only in the source terms. At each node
three unknowns #;, T;, and m; are thus to be computed, satisfying
the system (11) and (12) and the compatibility relations. These lat-
ter could be addressed in their original form (6-9). Unfortunately,
standard iterative methods like the Newton method cannot handle
directly such a system of two equations and four inequalities. Even
the application of nonlinear programming techniques'* to the orig-
inal problemis tedious and expensive as four generalized Lagrange
multipliers would have to be added at each node to cope with the
four inequalities.

Instead, we introduce a change of variable from a portion of the
planeonto the icing surface. Figure 6 shows that portion of the plane,
called the icing plane, with regions labeled I to III as for the icing
surface in Fig. 2. An extra region, labeled IV, has appeared, which
correspondsto dry air flight situations, i.e., without any droplets for
an arbitrary temperature below or above freezing point.

The significance of each region is better understood by looking
at the change of variable from the icing plane (u, v) to the icing
surface:

T =v? T =0
RegionI {7, =u? RegionIl {7, =u?
Hlice = 0 Mlice = v?

T = —u? T =v?—u?
Region III hy =0 Region IV hy =0
Mie =V Mice =0

This change of variable is invertible from the icing surface onto
the regionI U ITU III of the icing plane. Moreoverthe transformation
is differentiable,even on the u and v axis. These two features allow
the solutionof SWIM in (u;, v;) instead of (T}, h;, ri1;) ateachnode.
For example, using Newton’s method the two unknowns (u;, v;) are
updated with the residual of the two equations(11) and (12), without
compromising the convergence of the iterative solver because the
transformation is sufficiently regular. Whatever (u;, v;) is selected
in the icing plane, the compatibility relations will be automatically
satisfied.

Whenever required, the inverse transformation could be used to
recover the physical variables (T, h;, m;) from (u;, v;). A difficulty
arises from the fact that the inverse transformationis not defined in
regionlV, and the iterative solver could very well convergeto values
in that region. As just stated, the region IV corresponds to dry air
situations, which are, in fact, already completely representedby the
points on the portion of the # and v axis adjacent to this region. The
region IV simply has to be avoided as otherwise the system (11)
and (12) would be indefinite. Nonlinear programming techniques'*
could be used to avoid going out of regions I, II, and III.

IV. Numerical Results

Three test cases are presented, showing trends in the solution for
SWIM and the potential capabilities of the model.

A. Water Runback over a NACA 0012 Airfoil

The first test case is a laminar flow a NACA 0012 airfoil at Mach
number 0.399 and +15°C. Figure 7 shows the temperature contours
of the flow. Figure 8 shows the three dependent variables of SWIM
as well as derived variables. The variables are shown at four succes-
sive flow/SWIM iterations assuming 200 time steps into SWIM and
full convergence to a steady solution in the flow solver. Intersolver
communication is done as in Fig. 3.

The droplets impingement occurs within the first 10% along the
chord. The water film will initially form in this impingement area,
but will be advected all the way up to the trailing edge of the airfoil,
as there is no flow separation.

The air temperatureat infinity is +15°C, which gives a stagnation
temperature of 24.6°C at the wall for this laminar flow. The tem-
perature of the film is initialized with the stagnation temperature.
The impingement area of the airfoil tends to be cooler because of

,

o y
. s

Fig. 7 Temperature contours for the flow around a NACA 0012 airfoil.
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Fig. 8 Film runback over a NACA 0012 airfoil above freezing point. The variables are plotted against the arclength s. Flow conditions: 7o = +15°C,
Po =90.76 KPa, Uss =135.89m/s, Lyer = 0.3302m, LWC =1 g/m®, At =2.43 X10~% s, and #time steps = 200, 400, 600, 800.

Wall temperature Film thickness

Conductive heat flux

Film U-velocity
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the impingement of droplets at +15°C. The film rapidly reaches
the stagnation temperature as it flows aft the leading edge because
it is assumed to be in conduction contact with a reservoir at that
temperature. Of course, no ice accretes at that temperature.

The three next graphs of Fig. 8 shows heat source and sink terms.
For this test case conduction appears to be of crucial importance
for the convergence of SWIM. So, we had to implement a simple
conduction model, assuming a linear temperature profile through
a metal skin of a given thickness. The convection and conduction
term are almostin equilibriumexcept maybe at the stagnationpoint,
where convectionis not as effective and conductiondominates. This
might explain the peak in temperature at the stagnation point, even
if the droplet impingement is a cooling factor in that area. A look
at the film velocity shows that the water is almost stagnant at the
stagnation point, increasing the response of the film to conduction.
Radiative effects are not that important, as expected.
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Finally, the film velocity shows patterns similar to the film thick-
ness, as could be seen from the relation (3).

B. Dry Ice Accretion over a NACA 0012 Airfoil

The secondtestcaseis alaminarflow arounda NACA 0012 airfoil
at Mach number 0.420 and —45°C. Figure 9 shows the solution of
SWIM and the derived variablesafter 100 time steps. All of the water
freezesonimpact,releasingmore latentheat than the convectiveheat
transfer and the sensible heat that goes into the ice and supercooled
water temperature adjustment. A temperature increase is thus seen
in the ice accretion region. The simple conduction model was not
needed here.

C. Ice Accretion in a 90-deg Bend

Numerical results are shown on Fig. 10 for a Mach 0.1 laminar
flow in a 90-degbend. The airis coming from the left and follows the

0.0025 1

0.002_]

ion

0.0016_§

0,001 _}

Ice accret
Q
N

[ | 0

SR

Collection efficiency

0.0005_|

l.-0.2

0 L -0.4

1. 15
Distance

20000

° "

-20000_}

-40000_|]

ive heat flux

-60000_|

-80000_|

Convect

-100000_j

-120000

1. 15
Distance

~20_]

Radiative heat flux

-50_]

] T T T
0 0.5 i, 15 2 25
Distance

Fig. 9 Dry ice growth over a NACA 0012 airfoil. The variables are plotted against the arclength s. Flow conditions: Too =—45°C, P =90.76 KPa,
Uso =127.30m/s, Lyer = 0.3302m, LWC = 0.04 g/m3, At =2.43 X10~ ¢ s, and #time steps = 100.
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Fig. 11 From left to right: water film thickness after 50, 150, and 170 time steps.

bend.Becauseof their inertia, the dropletsimpinge on the outer wall,
creating a high collection efficiency area. At a sufficiently low tem-
perature the impinging water freezes right away on impact, deform-
ing the wall as seen by the flow and the droplets solvers. An effect
of the wall deformation is the evolution of the collection efficiency
pattern, as could be seen by comparing the top and bottom pictures.

Ata higher temperature a water film would grow as a resultof the
impingingdroplets and start running back along the wall shear lines.
Figure 11 shows the evolution of the film thickness at a temperature
above the freezing point for the initial impingement pattern shown
on Fig. 10.

V. Conclusion

A new equilibriumice accretion model based on PDEs has been
developed. This model includes some features for continuous film
runback prediction on two- and three-dimensional geometries and
for tight coupling with Navier-Stokes flow and droplets solvers.
By using a PDE-based model, a distinction can be made between
the physical modeling and the numerical resolution of the resulting
problem. This allows the inclusion of the time derivatives in the
model, thus carefully accounting for unsteady effects of the under-
lying phenomena.

Some numerical results have been presented for laminar flows,
and coupling with a turbulence model (already implemented in
FENSAP) is the next step. These results already show the poten-
tial of the method for simulatingice accretion on three-dimensional
lifting surfaces, including water runback effects. This is something
thathas notbeenthoroughlyinvestigated,atleast from the numerical
modeling standpoint, by the in-flight icing community. Of course,
a lot of work is still needed for this new icing model to show its
capabilities for a complete assessment of icing events. In particu-
lar, a more complete investigation of the tight coupling of the flow,
droplets,and SWIM solvers as well as comparisons with experimen-
tal ice shapes are the next natural steps in evaluating the capabilities
of the model.
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