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Development of a Shallow-Water Icing Model in FENSAP-ICE
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As part of a modern comprehensive in-� ight icing simulationcode (FENSAP-ICE), a new thermodynamicmodel
for ice accretion is developed (the Shallow-Water Icing Model or SWIM). SWIM is based on a system of partial
differential equations (PDEs) and thus is thought to be superior to a control volume (no PDE) approach used
in current icing codes. Flexibility in the physical modeling and � exibility in numerical algorithm selection make
SWIM an attractive icing model. The complete model, numerical algorithms used, and results are presented.

Nomenclature
Ci = cell at node i of the dual surface mesh
Cice = speci� c heat of ice
Cw = speci� c heat of water
h f = � lm thickness
h i = � lm thickness at node i
h i j = midedge value of h
L evap = evaporation latent heat of water
L fusion = fusion latent heat of ice
L subl = sublimation latent heat of ice
LWC = cloud liquid water content
Çmevap = evaporative mass � ux
Çm i = ice accretion mass � ux at node i
Çm ice = ice accretion mass � ux
ni j = vector normal to the dual cell boundary

along the edge i j
ÇQcond = conductive heat � ux from structure
ÇQh = convective heat � ux from air

Sh
i = right-hand side (RHS) of the discrete mass

conservationequation
ST

i = RHS of the discrete energy conservationequation
T = absolute temperature, ±K
T̃ = scaled temperature (= T ¡ Tref)
T̃d , 1 = scaled temperature of supercooled droplets
T̃i = scaled temperature at node i
Tref = reference temperature (triple point of water in ±K)
T1 = absolute temperature of the air at in� nity, K
U 1 = velocity of air at in� nity
u = velocity of the � lm
ū = average (along y) velocity of the � lm
(u, v) = dependent variables in the icing plane
ud = impact droplet velocity
(u i , vi ) = dependent variables in the icing plane at node i
u i j = midedge value of u
x = (x1 , x2) = coordinates along the wall
y = coordinates normal to the wall
b = local collection ef� ciency
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l w = dynamic viscosity of water
q w = water density
r = Boltzmann constant
s wall = air wall shear stress

I. Introduction

T HE simulation of ice accretion has been traditionally based
on inviscid panel or Euler � ow computations for the air, on

Lagrangian particle-tracking techniques for the droplets impinge-
ment, and on a control volume analysis of the mass and heat trans-
fer to model the ice accretion. The best known codes using these
approaches are NASA’s Lewice1 and the ONERA icing code.2

A wealth of experience on the physics of ice accretion makes
these codes valuable tools for a broad spectrum of in-� ight icing
situations.3 These codes are also ef� cient in terms of computer re-
sources requirement, but they need � ne tuning, especially of the
heat-transfer coef� cients, which cannot be predicted by potential
or inviscid � ow models.4 The heat-transfercoef� cient must thus be
guessed or parameterized in some way, leaving the engineer with
a dif� cult task in the presence of major � ow separations, as with
glaze ice.

The conventional icing simulation approach also suffers from
other limitations, such as limited ability to handle full three-
dimensional simulations. For example, the calculationof collection
ef� ciency seems to be a mixture of two- and three-dimensional
Lagrangian particle tracking, with the danger of missing three-
dimensional effects on the collection ef� ciency close to blade or
wing tips and in complex wing/nacelle con� gurations.Another lim-
itation is the very crude geometrical modeling of the water � lm
runback, which limits the applicability of the current icing simula-
tion technology to two-dimensional.Apart from an effort on three-
dimensional � lm modeling,2 no three-dimensional � lm model is
available in the icing literature or in icing codes.

Moreover, as far as the thermodynamicsof ice and water on walls
is concerned, current icing models1,2,5 do not make any distinction
between the physical model and the discretization of the model
actually used in computer codes. As far as we know, the only effort
in splitting the physical model and its numerical discretization is
the work of Al-Khalil et al.,6 but their work accounts only for the
� lm runback with no ice accretion. The resulting icing model is a
large system of discretized equations expressing the heat and mass
balanceon � nite controlvolumesat the air/ice interface.It is unclear
whether the system is well posed or even properly closed, or if
unstable numerical solutions or numerical bifurcations can result
from wrong physical assumptions or numerical schemes. In fact,
the terms most likely to cause numerical instabilities, such as the
time derivatives, are simply thrown away, and a sequence of steady
problems is solved for what is clearly an unsteady problem, that is
the growth of ice shapes.
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Current computational� uid dynamics (CFD) technologiescould,
to a large extent, overcome the limitations just stated. By solving
the compressible Navier–Stokes equations, one can automatically
obtain the heat-transfer coef� cients and, at the same time, fully
and directly account for the in� uence of the viscous effects on the
degradation of performance. A full three-dimensional approach to
icing, with efforts put on physical models and on the independent
choice of appropriatenumerical techniques,is also possiblethrough
CFD technology, at a cost of solving models based on partial dif-
ferential equations (PDEs). By adding and removing terms in the
system of PDEs, one can model as much physics as necessary to
have reliable predictions and make the information travel properly
and naturally through space. The effect of the numerical scheme
could also be investigated without having to compromise the phys-
ical modeling for the sake of code stability. Finally, a modern CFD
approach to icing simulation would bring new computational and
simulation technologies to the icing community, such as advanced
iterativemethods, moving meshes and mesh adaptation.This would
help make the investigationof complex engineeringproblems, such
as wing/body junctions, nacelle/inlet or tailplanes icing affordable.

The CFD Laboratory of Concordia University has developed an
Eulerianmodel for impingingdroplets.7 The ef� ciencyof thismodel
has been shown through the investigation of impingement patterns
on the nose of an aircraft, including � ne details of the cockpit
windows.8 It is the purposeof the presentpaper to go a step furtherin
the applicationof CFD techniquesto the in-� ight icing and propose
a thermodynamic model for the ice accretion and water runback.
The physical model, written as a system of PDEs, is described.Ap-
propriatenumericalmethodsand code interactionswith the � ow and
droplet solvers are presented.Numerical results are also presented.

II. Shallow-Water Icing Model
An icing simulation code is generally composed of three to four

modules, i.e., a � ow solver, a droplets impingement solver, a ther-
modynamical module for ice accretion prediction, and optionally a
structure code to account for conjugate heat transfer in anti-icing
systems.9 The classical compressible Navier–Stokes equations are
at the basis of the present air� ow computations.An Eulerian droplet
code7 is used to obtain the water collection ef� ciencies on walls.

A new equilibriummodel is introducedin this paper to predict the
ice accretion and water runback on the surface. Figure 1 shows the
heat and mass transfer phenomena taken into account in the model.

The velocityu of the water in the � lm is a functionof coordinates
x = (x1 , x2) on the surface and y normal to the surface:

u(x , y) = f ( s wall, y) (1)

where s wall is the main drivingforce for thewater � lm. A simplifying
assumption consists in taking f linear in y with u(x , y) null at the
wall, i.e.,

u(x , y) = (y / l w ) s wall(x) (2)

Fig. 1 Heat and mass balance in a thin � lm.

By averagingthe physicalquantities along the thickness of the � lm,
a so-calledShallow-Water IcingModel (SWIM) is obtained.For the
velocity this gives

ū(x) =
1

h f

h f

0

u(x , y) dy =
h f

2 l w

s wall(x) (3)

The system of PDEs is the following:

Mass Conservation

q w
@h f

@t
+ div(ūh f ) = U 1 LWC b ¡ Çmevap ¡ Çm ice (4)

where the three terms on the RHS model, respectively, the mass
transfer caused by the water droplets impingement (source for the
� lm), the evaporation, and ice accretion (sinks for the � lm).

Energy Conservation

q w
@h f Cw T̃

@t
+ div(ūh f Cw T̃ ) = Cw T̃d , 1 +

k ud k 2

2

£ U 1 LWC b ¡ 0.5(Levap + L subl) Çmevap

+ (L fusion ¡ Cice T̃ ) Çm ice + r T 4
1 ¡ T 4 + ÇQh + ÇQcond (5)

where the � rst three terms on the RHS model, respectively,the heat
transfer caused by the super-cooled water droplets impingement,
the evaporation, and ice accretion; the last three are the radiative,
convective, and conductive heat transfer.

The coef� cients q w ,Cw , T̃d , 1 ,U 1 , LWC , Levap, Lsubl, L fusion ,Cice ,
r , and T1 are constant parameters (at � rst) speci� ed by the user.
The substance involved (water near freezingpoint), and the ambient
icing conditions completely determine those values. The Eulerian
droplet module provides local values for the collection ef� ciency b
and the droplet impact velocity ud , and the � ow solver provides
local values for the wall shear stress s wall and the convective heat
� ux ÇQh . The evaporativemass � ux is recoveredfrom the convective
heat � ux using a parametric model.5 The conductiveheat � ux could
be given by a thermal structure analysis code or a simple model
inside the icing module.

Thus, there remain three unknowns: the � lm thickness h f , the
equilibrium temperature T̃ within the air/water � lm/ice/wall inter-
face, and the instantaneousmass accumulationof ice Çm ice . Only two
PDEs are available to specify three unknowns, as obtained from
the mass and energy conservation.The momentum conservation is
hidden in the simpli� ed and explicit form [Eq. (1)]. Its implicit so-
lution, in conjunction with the other two conservation laws, would
de� nitely allow the inclusion of more mechanical effects in the de-
scription of the � lm behavior (such as pressuregradient and surface
tension effects), but each extra momentum equation would come
with an extra unknown velocity component.

In fact, compatibility relations or state equations are needed to
close the system. Up to this point, nothing in the model ensures
that no ice accretes above the freezing point and no water � lm runs
back below the freezing point. The compatibility relations strictly
enforce these conditions on the solution. One way to write them is
the following:

Compatibility Relations

h f ¸ 0 (6)

Çm ice ¸ 0 (7)

h f T̃ ¸ 0 (8)

Çm ice T̃ · 0 (9)

The � rst compatibilityrelationis a natural assumptionon the � lm
thickness, as is the positivity of the air density for a compressible
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Fig. 2 Surfacegenerated by
the compatibility relations: I,
running wet, no ice; II, glaze
icing; III, rime icing.

� ow. This � rst assumption is explicitly stated as there is no guar-
anty, at this time, that the model forces the � lm thickness to remain
positive. The second compatibility relation, although not essential,
just prevents the remelting of ice. It could probably be removed
in case inward movements of the geometry (for ice remelting) can
be properly handled. On the basis of the � rst two compatibility re-
lations, the inequalities (8) and (9) are the true state (in)equations
preventingundesirablefreezing/runbackbehaviorsabove/below the
triple point of water.

To investigatethe well posednessof SWIM, one should� rst see if
the compatibilityrelations lower the number of unknowns from 3 to
2. Indeed,as couldbe seen on Fig. 2, the regionsof the (h f , T̃ , Çm ice)-
icing space delimited by the compatibility relations generate a con-
nected surface, called the icing surface.But two degreesof freedom
are enough to describe a surface. It thus becomes clear that by re-
stricting the solution of SWIM to the icing surface the number of
unknowns matches the number of PDEs available.

The icing surface is composed of three contiguous quarters of
plane. The � rst one, labeled I on Fig. 2, corresponds to a running
wet-no ice growth condition above the freezing point. Some water
may impinge on the walls, but no freezing occurs. Regions II and
III correspond to wet and dry ice growth conditions, respectively.
For wet or glaze ice growth a water � lm and some ice are present
simultaneously,and the equilibriumtemperatureshouldbe the triple
point of water. For dry or rime ice growth all of the impingingwater
freezes; no water runbackand the temperatureof the interfacecould
be below the freezing point. Of course, the solution is not restricted
to any particular situation in space and in time, and switching is
done automatically by the solver.

Up to now, we have looked at the following:
Icing Problem: Find h f , T̃ , and Çm ice satisfying the PDEs and the

compatibility relations.
It is possible to switch the dependent variables. For example, for

anti-icing applications, a possible variant would be the anti-icing
problem.

Anti-Icing Problem: Assuming Çm ice = 0, � nd h f , T̃ , and ÇQcond

satisfying the three equations and such that ÇQcond minimizes the
total heat � ux

wall

ÇQcond(x) dx

In this paper, we concentrate on the icing problem.
Naturally, SWIM has to interact with the other solvers because

both the icing and the anti-icing problems are coupled with the air
anddropletssolutions.Figure3 shows the code interactionstogether
with the variables transferred between codes.

III. Computational Approach
Apart from the strategyused in SWIM, which is detailednext, the

following methods are used for the numerical solution of the icing
problem:

1) Each of the three systems of PDEs (air/droplet/SWIM) are
solved independentlyfrom the others; selected variables are passed
between solvers.

2) Both the � ow and droplets solvers are weak-Galerkin � nite
element models on bricks, prisms, or tetrahedra.

Fig. 3 Code interactions with SWIM.

3) A Newton-generalizedminimal residual (GMRES) algorithm
is used to solve each nonlinear system of equations.

4) The movement of the walls caused by ice growth is done in
the � ow solver through an arbitrary Lagrangian Eulerian (ALE)
scheme,10 using the instantaneous ice growth rate Çm ice to specify
the wall nodes movement and could be complemented by a mesh
optimization method.11

Special care has to be taken because the two PDEs of SWIM are
expressed on the walls of the geometry, i.e., on a two-dimensional
surface embedded in a three-dimensional one. So, the � rst deriva-
tives, more precisely the div operator, of some unknowns have to
be evaluated along the wall surface. A classicalway to compute the
divergence of some vector on a surface is through the introduction
of a curvilinearcoordinatesystem on the surface.To avoid the intro-
duction of such curvilinear coordinates of an evolving (caused by
ice growth) wall surface, the intrinsic de� nition of the div operator
is applied:

div u( P) = lim
!

@
u ¢ n ds

vol( )
(10)

where is an area element that shrinks to the point P on the surface.
The � nite volumemethod is an applicationof thatde� nitionbut at

a discretelevel.A � nitevolumecell is chosenas theareaelement in
Eq. (10) instead of a vanishing sequence of arbitrary area elements.
Here a � nite volume cell means a cell of the dual surface mesh,
where the surface mesh is the hull of the three-dimensional mesh
at the air-structure/ice shape interface and the dual surface mesh is
the surface mesh obtained while connecting the barycenter of the
surface mesh cells to the midedges of the cells (see Figs. 4 and 5).

The two PDEs of SWIM are discretized using a cell-vertex Roe
� nite volumescheme12,13 basedonh f andh f T̃ as solutionvariables.
This gives

area(Ci )
@hi

@t
¡ Sh

i +
j

ui j ¢ ni j

2
h2

i + h2
j

¡ j ui j ¢ ni j j h i j (h j ¡ h i ) = 0 (11)

area(Ci )
@C ph i T̃i

@t
¡ ST

i + Cp

j

ui j ¢ n i j

2
h2

i T̃i + h2
j T̃ j

¡ j ui j ¢ ni j j h i j (h j T̃ j ¡ hi T̃i ) = 0 (12)

The summation is taken over all of the nodes j connected to the
node i . The time derivatives could be discretized with any � nite
difference formula, provided it results in a fully implicit scheme.

The variables hi and h i T̃i are only needed to write down the
Roe scheme. Indeed, their use as dependent variables is not recom-
mended for the present system as the � lm thickness h i will vanish
in many icing situations, and h i T̃i would also vanish, preventing
the recovery of T̃i from hi T̃i as when h i is strictly positive. The
variables hi and T̃i seem to be a better choice. Even if h i vanishes
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Fig. 4 Surface meshes for three-dimensional structured grids.

Fig. 5 Surface meshes for three-dimensional unstructured grids.

Fig. 6 Icing plane: I, running wet, no ice;
II, glaze icing; III, rime icing; IV, dry air,
no man’s land.

at some grid points, the use of a fully implicit scheme will make
possible the recovery of T̃i from the degenerated equations Sh

i = 0
and ST

i = 0.
The instantaneous ice accretion rate Çm i is also a dependent vari-

able, although appearing only in the source terms. At each node
three unknowns h i , T̃i , and Çm i are thus to be computed, satisfying
the system (11) and (12) and the compatibility relations. These lat-
ter could be addressed in their original form (6–9). Unfortunately,
standard iterative methods like the Newton method cannot handle
directly such a system of two equations and four inequalities.Even
the application of nonlinear programming techniques14 to the orig-
inal problem is tedious and expensive as four generalizedLagrange
multipliers would have to be added at each node to cope with the
four inequalities.

Instead, we introduce a change of variable from a portion of the
planeonto the icing surface.Figure6 shows that portionof theplane,
called the icing plane, with regions labeled I to III as for the icing
surface in Fig. 2. An extra region, labeled IV, has appeared, which
corresponds to dry air � ight situations, i.e., without any droplets for
an arbitrary temperature below or above freezing point.

The signi� cance of each region is better understood by looking
at the change of variable from the icing plane (u, v) to the icing
surface:

Region I

T̃ = v2

h f = u2

Çm ice = 0

Region II

T̃ = 0

h f = u2

Çm ice = v2

Region III

T̃ = ¡ u2

h f = 0

Çm ice = v2

Region IV

T̃ = v2 ¡ u2

h f = 0

Çm ice = 0

This change of variable is invertible from the icing surface onto
the regionI [ II [ III of the icingplane.Moreoverthe transformation
is differentiable,even on the u and v axis. These two features allow
the solutionof SWIM in (u i , vi ) instead of (T̃i , h i , Çm i ) at each node.
For example, using Newton’s method the two unknowns (ui , vi ) are
updatedwith the residualof the two equations(11) and (12), without
compromising the convergence of the iterative solver because the
transformation is suf� ciently regular. Whatever (ui , vi ) is selected
in the icing plane, the compatibility relations will be automatically
satis� ed.

Whenever required, the inverse transformation could be used to
recover the physicalvariables (T̃i , hi , Çm i ) from (u i , vi ). A dif� culty
arises from the fact that the inverse transformation is not de� ned in
region IV, and the iterative solvercouldvery well convergeto values
in that region. As just stated, the region IV corresponds to dry air
situations,which are, in fact, already completely representedby the
points on the portion of the u and v axis adjacent to this region. The
region IV simply has to be avoided as otherwise the system (11)
and (12) would be inde� nite. Nonlinear programming techniques14

could be used to avoid going out of regions I, II, and III.

IV. Numerical Results
Three test cases are presented, showing trends in the solution for

SWIM and the potential capabilities of the model.

A. Water Runback over a NACA 0012 Airfoil

The � rst test case is a laminar � ow a NACA 0012 airfoil at Mach
number 0.399 and +15±C. Figure 7 shows the temperaturecontours
of the � ow. Figure 8 shows the three dependent variables of SWIM
as well as derivedvariables.The variablesare shown at four succes-
sive � ow/SWIM iterationsassuming 200 time steps into SWIM and
full convergence to a steady solution in the � ow solver. Intersolver
communication is done as in Fig. 3.

The droplets impingement occurs within the � rst 10% along the
chord. The water � lm will initially form in this impingement area,
but will be advectedall the way up to the trailing edge of the airfoil,
as there is no � ow separation.

The air temperatureat in� nity is +15±C, which gives a stagnation
temperature of 24.6±C at the wall for this laminar � ow. The tem-
perature of the � lm is initialized with the stagnation temperature.
The impingement area of the airfoil tends to be cooler because of

Fig. 7 Temperature contours for the � ow around a NACA 0012airfoil.
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Fig. 8 Film runback over a NACA 0012 airfoil above freezing point. The variables are plotted against the arclength s. Flow conditions: T1 = +15±C,
P 1 = 90:76 KPa, U 1 = 135.89 m/s, Lref = 0.3302 m, LWC = 1 g/m3 , D t = 2:43 £ £ 10 ¡ 6 s, and #time steps = 200, 400, 600, 800.
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the impingement of droplets at +15±C. The � lm rapidly reaches
the stagnation temperature as it � ows aft the leading edge because
it is assumed to be in conduction contact with a reservoir at that
temperature.Of course, no ice accretes at that temperature.

The three next graphs of Fig. 8 shows heat source and sink terms.
For this test case conduction appears to be of crucial importance
for the convergence of SWIM. So, we had to implement a simple
conduction model, assuming a linear temperature pro� le through
a metal skin of a given thickness. The convection and conduction
term are almost in equilibriumexcept maybe at the stagnationpoint,
where convectionis not as effectiveand conductiondominates.This
might explain the peak in temperature at the stagnation point, even
if the droplet impingement is a cooling factor in that area. A look
at the � lm velocity shows that the water is almost stagnant at the
stagnation point, increasing the response of the � lm to conduction.
Radiative effects are not that important, as expected.

Fig. 9 Dry ice growth over a NACA 0012 airfoil. The variables are plotted against the arclength s. Flow conditions: T1 = ¡ 45±C, P1 = 90.76 KPa,
U 1 = 127.30 m/s, Lref = 0.3302 m, LWC = 0.04 g/m3, D t = 2:43 ££ 10¡ 6 s, and #time steps = 100.

Finally, the � lm velocity shows patterns similar to the � lm thick-
ness, as could be seen from the relation (3).

B. Dry Ice Accretion over a NACA 0012 Airfoil

The secondtest case is a laminar� ow arounda NACA 0012airfoil
at Mach number 0.420 and ¡ 45±C. Figure 9 shows the solution of
SWIM and the derivedvariablesafter 100 time steps.All of thewater
freezeson impact, releasingmore latentheat than theconvectiveheat
transfer and the sensible heat that goes into the ice and supercooled
water temperature adjustment. A temperature increase is thus seen
in the ice accretion region. The simple conduction model was not
needed here.

C. Ice Accretion in a 90-deg Bend

Numerical results are shown on Fig. 10 for a Mach 0.1 laminar
� ow in a 90-degbend.The air is coming from the left and follows the
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Fig. 10 Ice shape evolution with ALE: initial shape (left), iced bend (right).

Fig. 11 From left to right: water � lm thickness after 50, 150, and 170 time steps.

bend.Becauseof their inertia,the droplets impingeon the outerwall,
creating a high collection ef� ciency area. At a suf� ciently low tem-
perature the impingingwater freezes right away on impact, deform-
ing the wall as seen by the � ow and the droplets solvers. An effect
of the wall deformation is the evolution of the collection ef� ciency
pattern, as could be seen by comparing the top and bottom pictures.

At a higher temperaturea water � lm would grow as a result of the
impingingdropletsand start runningback along the wall shear lines.
Figure 11 shows the evolution of the � lm thicknessat a temperature
above the freezing point for the initial impingement pattern shown
on Fig. 10.

V. Conclusion
A new equilibrium ice accretion model based on PDEs has been

developed. This model includes some features for continuous � lm
runback prediction on two- and three-dimensional geometries and
for tight coupling with Navier–Stokes � ow and droplets solvers.
By using a PDE-based model, a distinction can be made between
the physical modeling and the numerical resolutionof the resulting
problem. This allows the inclusion of the time derivatives in the
model, thus carefully accounting for unsteady effects of the under-
lying phenomena.

Some numerical results have been presented for laminar � ows,
and coupling with a turbulence model (already implemented in
FENSAP) is the next step. These results already show the poten-
tial of the method for simulating ice accretion on three-dimensional
lifting surfaces, including water runback effects. This is something
thathas notbeenthoroughlyinvestigated,at least from thenumerical
modeling standpoint, by the in-� ight icing community. Of course,
a lot of work is still needed for this new icing model to show its
capabilities for a complete assessment of icing events. In particu-
lar, a more complete investigationof the tight coupling of the � ow,
droplets,and SWIM solversaswell as comparisonswith experimen-
tal ice shapes are the next natural steps in evaluatingthe capabilities
of the model.
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